SCL is required for normal function of short-term repopulating hematopoietic stem cells.
نویسندگان
چکیده
The stem cell leukemia (SCL) gene is essential for the development of hematopoietic stem cells in the embryo. Here, we used a conditional gene targeting approach to examine the function of SCL in adult hematopoietic stem cells (HSCs). Flow cytometry of bone marrow from SCL-deleted mice demonstrated a 4-fold increase in number of Lin(neg) c-kit(+) Sca-1(+) cells. Despite this increase in the number of phenotypic HSCs, competitive repopulation assays demonstrated a severe multilineage defect in repopulation capacity by SCL-deleted bone marrow cells. SCL-heterozygous cells also showed a mild repopulation defect, thus suggesting haploinsufficiency of SCL. The transplantation defect of SCL-deleted cells was observed within 4 weeks of transplantation, indicating a defect in a multipotent progenitor or short-term repopulating HSCs. Although the defect persisted in secondary transplants, it remained relatively stable, suggesting that SCL was not required for self-renewal of the HSCs. Generation of SCL-deleted cells within SCL-wild-type mice rescued the early repopulating defect. Together, our results suggest that SCL is required for the normal function of short-term repopulating HSCs.
منابع مشابه
Stem cell leukemia protein directs hematopoietic stem cell fate.
Stem cell leukemia (SCL) protein has been shown to be an essential transcription factor during hematopoietic development in the embryo. In adult hematopoiesis, however, the role for SCL has remained largely unknown, whereas it is expressed in bone marrow hematopoietic stem cells (HSCs). In this study, we performed HSC transplantation and an in vitro HSC differentiation assay using retrovirally ...
متن کاملScl regulates the quiescence and the long-term competence of hematopoietic stem cells.
The majority of long-term reconstituting hematopoietic stem cells (LT-HSCs) in the adult is in G(0), whereas a large proportion of progenitors are more cycling. We show here that the SCL/TAL1 transcription factor is highly expressed in LT-HSCs compared with short-term reconstituting HSCs and progenitors and that SCL negatively regulates the G(0)-G(1) transit of LT-HSCs. Furthermore, when SCL pr...
متن کاملSelective rescue of early haematopoietic progenitors in Scl(-/-) mice by expressing Scl under the control of a stem cell enhancer.
The stem cell leukaemia gene (Scl) encodes a basic helix-loop-helix transcription factor with a pivotal role in both haematopoiesis and endothelial development. During mouse development, Scl is first expressed in extra-embryonic mesoderm, and is required for the generation of all haematopoietic lineages and normal yolk sac angiogenesis. Ectopic expression of Scl during zebrafish development spe...
متن کاملTie2Cre-mediated gene ablation defines the stem-cell leukemia gene (SCL/tal1)-dependent window during hematopoietic stem-cell development.
The stem-cell leukemia gene (SCL/tal1) is essential for the formation of all blood lineages. SCL is first expressed in mesodermal cells that give rise to embryonic blood cells, and continues to be expressed in fetal and adult hematopoietic stem cells (HSCs). However, SCL is not required for the maintenance of established long-term repopulating (LTR) HSCs in the adult. The time point at which HS...
متن کاملShort- and long-term multilineage repopulating hematopoietic stem cells in late fetal and newborn mice: models for human umbilical cord blood.
Blood from late fetal and newborn mice is similar to umbilical cord blood obtained at birth in human beings, an important source of stem cells for clinical transplantation. The mouse model is useful because long-term functions can be readily assayed in vivo. To evaluate the functions of hematopoietic precursors in the blood and other tissues of late fetal and newborn mice, short- and long-term ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 103 9 شماره
صفحات -
تاریخ انتشار 2004